Hilbert-Schmidt Hankel Operators and Berezin Iteration
نویسندگان
چکیده
منابع مشابه
G-frames and Hilbert-Schmidt operators
In this paper we introduce and study Besselian $g$-frames. We show that the kernel of associated synthesis operator for a Besselian $g$-frame is finite dimensional. We also introduce $alpha$-dual of a $g$-frame and we get some results when we use the Hilbert-Schmidt norm for the members of a $g$-frame in a finite dimensional Hilbert space.
متن کاملTrace class operators and Hilbert-Schmidt operators
If X,Y are normed spaces, let B(X,Y ) be the set of all bounded linear maps X → Y . If T : X → Y is a linear map, I take it as known that T is bounded if and only if it is continuous if and only if E ⊆ X being bounded implies that T (E) ⊆ Y is bounded. I also take it as known that B(X,Y ) is a normed space with the operator norm, that if Y is a Banach space then B(X,Y ) is a Banach space, that ...
متن کاملHankel Operators on Hilbert Space
commonly known as Hilbert's matrix, determines a bounded linear operator on the Hilbert space of square summable complex sequences. Infinite matrices which possess a similar form to H, namely those that are 'one way infinite' and have identical entries in cross diagonals, are called Hankel matrices, and when these matrices determine bounded operators we have Hankel operators, the subject of thi...
متن کاملg-frames and hilbert-schmidt operators
in this paper we introduce and study besselian $g$-frames. we show that the kernel of associated synthesis operator for a besselian $g$-frame is finite dimensional. we also introduce $alpha$-dual of a $g$-frame and we get some results when we use the hilbert-schmidt norm for the members of a $g$-frame in a finite dimensional hilbert space.
متن کاملHilbert-Schmidt operators and tensor products of Hilbert spaces
Let V ⊗HS W be the completion of V ⊗alg W in the norm defined by this inner product. V ⊗HS W is a Hilbert space; however, as Garrett shows it is not a categorical tensor product, and in fact if V and W are Hilbert spaces there is no Hilbert space that is their categorical tensor product. (We use the subscript HS because soon we will show that V ⊗HS W is isomorphic as a Hilbert space to the Hilb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Tokyo Journal of Mathematics
سال: 2008
ISSN: 0387-3870
DOI: 10.3836/tjm/1233844053